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Multistability of reentrant rhythms in an ionic model of a two-dimensional annulus
of cardiac tissue
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The dynamics of reentry in a model of a two-dimensional annulus of homogeneous cardiac tissue, with a
Beeler-Reuter type formulation of the membrane ionic currents, is examined. The bifurcation structure of the
sustained propagated solutions is described as a function of R;, and R,,, the inner and outer radii of the
annulus. The transition from periodic to quasiperiodic reentry occurs at a critical R;,, which first diminishes and
then saturates as R, is increased. The reduction of the critical R;, is a consequence of the increase of the
wave-front curvature. There is a range of R;, below the critical radius in which two distinct quasiperiodic
solutions coexist. Each of these solutions disappears at its own specific value of R;,, and their annihilation is
preceded by a new type of bifurcation leading to a regime of propagation with transient successive detachments

of the wave front from the inner border of the annulus.
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I. INTRODUCTION

Cardiac reentry, referring to the self-sustained propagation
of a wave of excitation in the tissue, is an important mecha-
nism generating cardiac arrhythmias. Since the seminal pa-
per of Mines [1] on an experimental model of reentry, tran-
sient or sustained reentry has been shown to occur around an
anatomical obstacle or around a region of partially or totally
inexcitable tissue [2-5]. In continuous two- and three-
dimensional media, reentry, in the form of a spiral wave, has
been obtained both numerically and experimentally without
the requirement of anatomical or inexcitable obstacles
[6-11]. Such spiral waves are thought to play a role in both
initiating [12,13] and sustaining fibrillation [14,15].

Self-sustained propagation in a continuous one-
dimensional (1D) ring is the simplest model of reentry
around an obstacle [16—18]. For large radii, stable period-1
reentry exists, corresponding to a fixed wave form traveling
at constant speed around the annulus. Decreasing the length
of the pathway may change propagation to quasiperiodic re-
entry if the restitution curve, which describes the duration of
the action potential duration (APD) as a function of the re-
covery time, is an increasing function with a slope >1 at low
recovery intervals [19,20]. However, even when this condi-
tion is fulfilled, periodic propagation may remain stable if
memory and/or electrotonic effects are important [21-23].

A previous paper [24] has suggested that bifurcation from
period-1 to quasiperiodic reentry could also occur in the an-
nulus [25], but the characteristics of the bifurcation were not
investigated in detail. The main difference between the 1D
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ring and the 2D annulus is the existence of the curved acti-
vation and repolarization front, which follows from their ex-
tension from the inner to outer radius of the annulus. It is
well known that increased curvature of the activation front
reduces the velocity of propagation [26-28], and it has been
shown that the curvature can also prolong the duration of the
action potential [29]. However, not much is known about the
influence of these mechanisms on the stability of anatomical
reentry.

This paper has two main results. First, we present a de-
tailed description of the bifurcation of sustained reentry as a
function of the inner and outer radii of the annulus. Two
different types of bifurcation occur in different ranges of
radii: first, a transition from period-1 to quasiperiodic solu-
tions and then, at a still shorter inner radius, a transition to
quasiperiodic solutions with repetitive transient unpinning of
the activation front from the inner border of the annulus. The
analysis of the bifurcation is done for two versions of the
membrane ionic model, which differ in the duration of action
potential and its rhythm dependence.

The second result is a comparison of the dynamics of the
full 2D annulus model with a simplified formulation. The
simplified model deals with period-1 reentry, for which the
spatial profile of the activation front is described by a set of
ordinary differential equations. Then, the stability of the so-
Iution is established by solving a reaction-diffusion system
describing the propagation at r=R;,. The pseudo-2D
reaction-diffusion system is also used to examine the quasi-
periodic regimes of reentry. Comparing the behavior of the
2D and simplified models helps to clarify the contribution of
the curvature of the activation front, of the action potential
restitution curve, and of the velocity dispersion curve to the
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1539-3755/2005/72(5)/051927(11)/$23.00 051927-1 ©2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.72.051927

P. COMTOIS AND A. VINET

regimes of reentry in the annulus, as has been done with an
integral-delay model in the 1D ring [17,19,20,31,38].

II. MODELS

Two different models of the annulus are used in this pa-
per. The first and more general model is a 2D reaction-
diffusion equation, while the second model is a reduction of
the first model.

A. Reaction-diffusion model

The model is based on the monodomain reaction-diffusion
equation, which, in polar coordinates, is written as
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where V is the transmembrane potential (mV), C,, is the
membrane capacitance (1 uF/cm?), S is the surface-to-
volume ratio of the intracellular medium (0.4 um™), p is the
intracellular resistivity (200 ) ¢cm), and 7, is the ionic cur-
rent (uA/cm?). Neumann boundary conditions are imposed
on both the inner boundary (r=R;,) and the outer boundary
(r=R,,;) such that
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Numerical solutions are obtained using the spectral-finite el-
ement method described in the Appendix.

B. Simplified kinematical model

The simplified model is a two-step procedure: First, the
kinematical model described in Comtois and Vinet [29] is
used to obtain the form of the activation front for period-1
reentry in the annulus. The kinematical model is based on the
assumptions that, in period-1 reentry, (1) the activation and
repolarization fronts extending from r=R;, to r=R,, are
identical and (2) their velocity vector is tangent to the annu-
lus at r=R;, and r=R,,,. The curve describing the form of the
activation and repolarization fronts across the annulus is ob-
tained by solving the system of ordinary differential equa-
tions

b _f
s h
d_K_i<1 @)
ds 6O h)’
dv
— =K, 2
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where s is the curvilinear coordinate along the front (s=0 at
r=R;,), D(s) is the diastolic interval, K(s) is the local curva-
ture, and @ and v(s) are, respectively, the speed normal and
tangent to the front. The model is based on a generalized
APD restitution relation A(K,D)=A.(K)F(D), giving the
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APD as a function of the local diastolic interval D(s) and of
the local curvature K(s), and a general velocity dispersion
relation 6(K,D)=0,.(K)F,(D-D,,;,,(K)). The notation Y,
=dY/dx is used to represent the partial derivative of the dis-
persion and restitution relations (i.e., 6p,6x,Ap,Ag). The
function f=w-Kv, where w=27R,,/ #(K(s=0),D(s=0)), is
the constant angular velocity of the period-1 reentry, and A
=0p—0x(Ap+1)/Ag. The functions A(K,D) and 6(K,D) and
the method to solve the system are given in [29]. The deriva-
tives of the two functions A.,(K) and F(D) defining the du-
ration of the action potential are both positive, such that aug-
menting the curvature and/or the diastolic interval prolongs
the duration of the action potential A(K,D). On the other
hand, 6..(K)=6,—uK is a decreasing function, while F,(u)
and D,,,(K) are both increasing functions. Increasing the
curvature therefore reduces the speed through 6..(K) and
through the increase of the minimum diastolic interval
D,,i,(K) in F,(u) that sets the minimum value of D below
which the propagation stops. The kinematical model has a
unique solution for each pair of values [R;,,R,,], in which
the curvature is always maximum and positive at r=R,,.

In the second step K;,=K(s=0), the curvature of the
period-1 solution at R;, obtained from the kinematical
model, is introduced as a parameter in the pseudo-two-
dimensional system:
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This equation is deduced from Eq. (1) by assuming that (1)
all the equipotential curves V(r,¢)=c are identical so that
the spatial variation of curvature along them is the same; (2)
the propagation is normal to r, which is true at r=R;, and
r=R,,; and (3) the curvature is constant in time, which is
true for period-1 solutions. It is the first assumption that
makes Eq. (3) an approximation of Eq. (1). This pseudo-2D
model is equivalent to the 1D cable equation, supplemented
by an advection term that introduces the effect of curvature
at R;,. The equation is solved as a 1D cable equation of
length L=2mR;, with periodic boundary conditions [18] us-
ing a finite-element method with linear basis functions on a
uniform grid with an internode distance of 50 um and a
constant 5-us time step [29]. It can give a stable period-1
reentry, a sustained quasiperiodic solution, or a transient re-
entry leading to annihilation.

In summary, the kinematical model predicts what should
be the curvature of the activation front in a period-1 reentry.
The pseudo-2D system is then used to diagnose the stability
of this period-1 solution. Together, they provide a simplified
alternative to be compared with the complete reaction-
diffusion model defined by Eq. (1).

C. Ionic model

The membrane ionic current [;,, is represented by a
Beeler-Reuter-type model [30] described in [18,20,31]. The
model is identical to the original Beeler-Reuter formulation,
except for the sodium current [Iy,=gnm°hj(V—-E,,)]. The
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variables m and /h follow the Drouhard-Roberge formulation
[36], while j..(V)=h.(V) and 7;(V)=107,(V). The Beeler-
Reuter-Drouhard-Roberge (BRDR) model was chosen be-
cause its properties have been extensively documented both
in the 1D ring [18,20,32] and in the space-clamped configu-
ration [33-35] and because the generalized dispersion and
restitution relations needed for the kinematical model have
been previously obtained [29]. In the BRDR model, the APD
is determined by an interplay between the outward potassium
current and the slow inward calcium current [I;=gdf(V
—-E)]. I is controlled by one “activation” variable (d) and
one “inactivation” variable (f), each of which is character-
ized by a time constant (7,(V), 7{V)) and a steady-state func-
tion (d..(V),f»(V)). In this paper, comparison is made be-
tween the BRDR model, in which the time constants are set
as in [30], and the modified BRDR (MBRDR) model where
74(V) and 74V) are halved. Halving the time constants ab-
breviates the action potential and has been shown to change
the bifurcation structure both in the space-clamped configu-
ration and in the 1D ring [36,38].

Simulations of the two reaction-diffusion systems defined
by Egs. (1) and (3) give the variation of V in time and space
[see Fig. 1(a)]. Each active response is associated with the
formation of an action potential [Fig. 1(b)]. For each node,
the activation time is defined as the instant when |dV/dt
reaches its maximum during the upstroke, and the repolar-
ization time, marking the end of the action potential and the
beginning of the diastolic interval, is taken as the moment of
the downcrossing of —50 mV during repolarization (corre-
sponding approximately to 70% of repolarization or APD70).
The time interval between two successive activations (7) is
divided in two parts: the action potential duration (A), from
the activation time to the following repolarization time, and
the diastolic interval (D), from the repolarization time to the
next activation time. Since the APD restitution curve and
velocity dispersion relation are most often given as functions
of D and since D is also the independent variable in low-
dimensional models developed to represent the dynamics of
paced cells and reentry in the 1D ring, we display the spatial
profile of D to describe the propagation.

III. RESULTS

A. Increasing the width of the annulus: Formation
of a curved wave front

In a 1D ring, period-1 reentry remains stable as long as
the radius is larger than a critical value [18,31]. On the an-
nulus, the stability of the period-1 solution depends on both
R;, and R,,. Figure 2 shows the effect of AR=R,,—R;, on
the period-1 solution in an annulus with R;,=3.05 cm. The
widening of AR prolongs the period of the rotation [T, Fig.
2(a)], until T saturates at AR=~0.35 cm. The curves in Fig.
2(b) present the angular position of the activation front as a
function of r'=r—R;, for different AR. The slope of these
curves at ¢»=0 mirrors the curvature of the front at r=R,,,. It
shows that the curvature increases as AR is widened, but
saturates, as did the value of T, at AR=0.35 cm.

The kinematical model defined by Eq. (2) was found to fit
closely the spatial profile of the activation front and the spa-
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FIG. 1. Reaction diffusion model: (A) Wave front of period-1
reentry in an annulus with R;,=3.0 cm and R,,,=7.0 cm. The gray
scale depicts the transmembrane potential V. (B) Action potential at
r=R;,. The period T is the time between successive activations, A is
the action potential duration (APD), and the diastolic interval D
=T-A.

tial distribution of D, as well as the value T of the period-1
solutions of the BRDR reaction-diffusion model for all R;,
and R,,,. The kinematical model provides K(s) and D(s), and
permits an examination of the interplay of the mechanisms
responsible for the slowing of the propagation. The widening
of AR increases K;,=K(0), so that the speed of propagation
is reduced both through the eikonal velocity relation 6.,(K)
[27] and through an increase of the absolute refractory period
D,,;i(K) in Fo(D-D,,;,,(K)). This second contribution reflects
the fact that for a higher curvature a more excitable medium
is needed for propagation to be sustained. However, K;, al-
ways remains less than 3.0 cm™! for the period-1 solutions at
all the values of R;, and AR considered in this article, so that
the change of D,,;,(K) <1 ms can be neglected. Hence, for a
constant value of R;,, widening AR increases K;,, which re-
sults in a reduction of 6,(K) and a prolongation of 7. Since
T=D+A(D), the effect of K;, on the speed and the period is
partially counterbalanced by the increase of D.

B. Transition from periodic to quasiperiodic reentry

In the BRDR 1D ring model, propagation changes from
period-1 to quasiperiodic reentry when the radius is reduced
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FIG. 2. BRDR reaction-diffusion model: (A) Period of rotation
(T) of the period-1 solution as a function of the width AR of an
annulus with R;,=3.05 cm (7=284.5 ms for AR=0, the 1D ring).
The increase of T saturates at AR=0.4 cm. (B) Angular position of
the wave front, for different values of AR. The position of the wave
front is defined as the value of ¢ where |9V/d¢|) reaches its maxi-
mum for each r' =r—R,;,, with the position at R;, taken as reference
(¢=0). The initial deflection of the wave front (at ' =0) increases
with AR, but also saturates at AR~ 0.35 cm.

below a critical value R;, ,;; [17-20,38]. This section inves-
tigates how the width of the annulus acts upon this bifurca-
tion.

To study the bifurcation, AR was kept constant and R;,
was decreased with a minimum step of 0.001 cm. To diag-
nose the stability, the values of D were collected for all
nodes at r=R,;, for three complete rotations. If the differences
between the successive values at each node were less than
0.5 ms, the system was considered to be in a stable period-1
regime. If this criterion was not satisfied, but if the differ-
ences between the successive maxima and between the suc-
cessive minima of D were both less than 0.5 ms, the system
was considered to be in a quasiperiodic regime. The calcula-
tion was continued until one of these sets of criteria was
fulfilled. The final stable solution was then mapped on the
next annulus (smaller R;,, same AR) as initial condition. The
reverse procedure (increasing R;,) was done to investigate
bistability near the bifurcation.

The process was repeated for different values of AR to
track the bifurcation in the [R;,,AR] parameter plane. AR
=0.05 cm was the first and smallest value investigated. For
this case, the initial R;, was chosen large enough to give a
stable period-1 solution on a 1D ring and the initial condition
was built by pasting together the 1D ring solutions for each
value r between R;, and R,,, with a shift in the angular
position to reproduce the curvature of the activation front.
The shift was taken from the solution of the kinematical
model. Afterward, for each larger values of AR, the results
from the annulus with the closest shorter AR already studied
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FIG. 3. BRDR and MBRDR reaction-diffusion models: The bi-
furcation as a function of R;, for two different widths of the annu-
Ius: AR=0.05 cm (solid curves) and AR=1.0 cm (dotted curves).
The minimum and maximum D measured at R;, for each stable
solution are plotted. The bifurcation of the BRDR model is super-
critical (A), while it is subcritical for the MBRDR model, with
bistability between period-1 and quasiperiodic solutions (B).

were used to build a new initial condition. A value of R;,
giving a stable period-1 solution was selected, and the cor-
responding stable solution was mapped onto the new annulus
with the same R;, and the larger new AR value. R;, was again
changed gradually to locate the bifurcation.

Figure 3(a) (BRDR model) shows the results for two val-
ues of AR. Increasing the width of the annulus from AR
=0.05 cm (solid curve) to AR=1.0 cm (dotted curve) yields
the same bifurcation from period-1 to quasiperiodic solution,
but at different values of R;, ., (from 3.05 to 2.95 cm, com-
pared to 3.1 cm for the 1D ring). The D spatial profile of
these quasiperiodic solutions displays oscillations whose am-
plitude increases as R;, is diminished below R;, ;. The bi-
furcation is supercritical since there is a gradual increase of
the amplitude of the oscillation and no bistability between
period-1 and quasiperiodic solutions [39]. Figure 4 (dashed
curve) provides a global picture of the locus of the bifurca-
tion in the [R,,,AR] parameter plane. R,,; reaches an
asymptotic minimum value for AR=0.5 cm, for a total de-
crease of approximately 0.15 ¢cm (from 3.1 ¢cm in the 1D ring
down to 2.95 c¢m in the 2D annulus) [20,31]. Hence increas-
ing the width of the annulus stabilizes the period-1 reentry
since the transition to quasiperiodic propagation is shifted to
a lower Ry, .;;. The inset in Fig. 4 shows that the period of
rotation at R;, .,;, remains almost constant for all AR values,
a key observation to explain the mechanism responsible for
the bifurcation.

The pseudo-2D equation, fed with the K;, values obtained
from the kinematical model, gives a relatively accurate pre-
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FIG. 4. The boundary between period-1 (P) and quasiperiodic
(QP) reentry in the (R;,,AR) parameter plane for the BRDR model.
The boundary defines a curve [AR(R;, .;;) ], which is similar for the
reaction-diffusion model (dashed curve) and the combination of the
kinematical [Eq. (2)] and pseudo-2D [Eq. (3)] modes (solid curve).
Inset: The period of rotation at the bifurcation for both models is
approximately constant as a function of AR.

diction of R;, .;; as a function of AR and the same invariance
of T at the bifurcation (Fig. 4 and inset, solid curves). Hence
we can use the kinematical model to analyze the character-
istics of the solutions at the bifurcation. Since K;, was always
<3 cm™! for all bifurcations from period-1 to quasiperiodic
solutions, the term A.(K) in the function A(K,D)
=A.(K)F(D) giving the APD varied by less than 1 ms, and A
can be approximated as a function of D alone [i.e., A(D)
=A,(0)F(D)]. In period-1 reentry, T=A+D. Since the bifur-
cation occurs at the same critical value of period T, for all
AR, it also occurs at a constant value D,,;,, which fulfills the
relation T.,;,;=A(D,;;) +D,,;. In fact, D, is close to the value
where the slope of A,(0)F(D) is equal to 1.0 [98 ms for
A.(0)F(D), while D,,;;=106 ms for the two cases shown in
Fig. 3(a)]. This indicates that the slope of the restitution
curve with respect to D is still the main determinant of the
stability of the period-1 reentry in the BRDR annulus model,
as it was in the case of the 1D ring [19,20]. D,,;; and T.;
being determined by the slope of the restitution curve,
Ri,..i(AR) is given by the relation

2 77-Rin,crit( AR)
T.

crit

= 000(K(Rin,crit(AR)’ AR))
X FZ(Dcrit - Dmin(K(Rin,crit(AR) B AR))) .

The 1D ring corresponds to AR=0 and K(R,0)=0. Neglect-
ing the variation of D,,;,, and using 6,.(K)=6,—uK yields

Rin,crit(AR) _

M
=1- _K(Rin cri (AR),AR), (4)
Rin,crit(o) 00 ot

where u, 6, and K(R;,,AR) depend on the resistivity of the
medium and on the characteristics of Iy, activation. In the
BRDR 1D ring model, R;, .;0)=3.1 cm and 6,=70.29 cm.
In our previous work with the pseudo-2D formulation [29],
we obtained estimates for u=1.05 cm?/sec and
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K(R;,, ) = 5.1”062Rin 4 | 8¢7002Rin, (5)

Solving together Egs. (4) and (5) gives the unique solution
Ricri()=2.98 cm, which is the smallest R;, at which the
bifurcation can occur since the effect of AR on the curvature
at R;, is maximal when AR — . In spite of the approxima-
tion made in the fitting given in Eq. (5), it is close to the
value obtained by numerical simulation of the kinematical
and pseudo-2D model (2.97 cm). As seen in Fig. 4, the limit
of the reaction-diffusion model is a little lower, at ~2.95 cm.
Since the simulations of the pseudo-2D model use the
K;,(R;,) value predicted by kinematical model, which is
based on restitution and dispersion functions obtained by fit-
ting, this could explain some part of the discrepancy. How-
ever, the basic assumption of the pseudo-2D model, which is
that all equipotentials have the same curvature, certainly con-
tributes to the difference with the complete 2D model.

In summary, the stability of the period-1 solution of the
BRDR model is determined by D,,;, the value at which the
slope of the APD [=A..(0)F(D)] restitution curve reaches 1.
In this model, D.,;,;~98 ms and falls in a range where the
D-dependent term of the speed of propagation is still con-
stant and maximal [illustrated in Fig. 5(¢)], so that the varia-
tion of curvature is the only factor that can decrease the
speed of propagation (through the term 6,—uK) and shorten
Ry crir- The high value of D, also forces the bifurcation to
occur in a range of R;, where K;, remains relatively small
(less than 3 cm™" in the kinematical model), even for a large
annulus.

The dynamics of the MBRDR model has been described
both in the paced space-clamped configuration and 1D ring
[35,38]. Because the MBRDR model has a shorter APD, the
loss of stability of the period-1 solution is taking place at a
shorter period of repetitive activity, associated with a shorter
ring radius. The bifurcation is subcritical, with an interval of
bistability between period-1 and period-2 solutions in the
space-clamped configuration, and period-1 and quasiperiodic
(QP) reentry in the 1D ring. This change from supercritical
to subcritical bifurcation was explained by the increase in the
steepness of the APD restitution curve induced by the accel-
eration of the dynamics of d and f gates. The same type of
behavior is seen in the annulus. R, ., is much smaller for
the MBRDR model [Fig. 3(b)], and the bifurcation becomes
subcritical, with an interval of R;, in which period-1 and
quasiperiodic reentries coexist. As for the BRDR model,
R;, crir is reduced by the increase of AR, until it reaches a
saturated value. The fact that the transition from supercritical
to subcritical bifurcation also occurs in the annulus indicates
that the steepness of the restitution relation still controls the
bifurcation.

C. Existence of multiple-QP solutions in the BRDR model

Two different QP modes of reentry have been observed in
the 1D ring [18,31,36]. Labeled as mode-0 and mode-1 (as-
sociated, respectively, with the first and second eigenvalues
of the integral-delay equation used to analyze the system),
they differ both in their spatial period and in the way they are
created. The fact that only a finite number of modes exist and
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FIG. 5. (Color online) Quasiperiodic modes of reentry in the
BRDR reaction-diffusion model: (A) AR=2.0 cm: mode-0 (R;,
=2.09 cm, solid line) and mode-1 (R;,=2.42, dashed line) solutions
at R;,. The curves represent the values of D at each site along r
=R;, for multiple turns (n) abutted end to end. The dotted curve
represents D at r=R,,,, for mode-1 and is almost identical to D at
r=R;,, showing that the variation is concordant along r. (B) Varia-
tion of D along ¢ for 4 successive turns [n=1, 2, 3, and 4, respec-
tively black, red, green, and blue (color in online version)] of the
mode-0 solution. Each pair of successive turns is associated with a
single node (crossing between high and low values highlighted by
circles). (C) Same as in panel (B), but for mode-1, which gives
three nodes. (D) The restitution curves A(D) for mode-0 (thin lines
pointed to by the arrow with D,,,,=31 ms, dA/dD)|,,,,=3.5, and
D.,;;=95 and 106 ms for derivative of the lower branch and upper
branch, respectively) and mode-1 (thick line with D,,;,=31 ms,

dA/dD)|,,,x=3.2, and D,,;,;=98 and 130 ms) from the quasiperiodic
solutions displayed in panel (A). For clarity, the mode-0 curve is
upshifted by 20 ms. Each curve has two branches, corresponding,
respectively, to the increasing and decreasing phase of D [31]. (E)
The dispersion curves 6(D) of the two solutions are superimposed.

that they are appearing at different values of the radius was
argued to be a consequence of the effect of resistive coupling
on the APD [20]. As in the 1D ring, the bifurcation in the
MBR annulus is supercritical and the quasiperiodic solution
that appears at the bifurcation always corresponds to the
mode-0 solution. As shown in Fig. 5(a) (thick curve), the
profile of D has a spatial period that is close to two-turns.
The bifurcation being supercritical, our method of investiga-
tion that starts from a period-1 reentry and does a continuous
tracking of the solution as a function of AR could only pro-
vide information of the evolution of the mode-0 solution. To
obtain the mode-1 solution, an alternative initial solution had
to be constructed. Mode-1 solutions were available from our
previous work on the 1D ring [18,31,38]. One of these solu-
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tions was mapped onto each radius of the annulus, with a
shift in the angular position (taken from the period-1 solution
predicted from the kinematical model for the same annulus).
For a given AR, this procedure was first tried for an annulus
with R;,=R,;, .,;y and repeated with shorter values of R;, until
a stable mode-1 solution was found. The characteristics of
the mode-1 solution were then investigated by the procedure
of continuous decrease and increase of R;,. We found that
the mode-1 solution [Fig. 5(c), R,,=2.42] appears at R,,
<Rjcin (eg, for AR=2cm, R;,=282cm<R;, .;
=2.95 cm) with a high-amplitude oscillation of D and a spa-
tial wavelength ~3 times shorter than the mode-0 solution.
The two modes are thus created by distinct scenarios of bi-
furcation that occur at different values of R;,.

In the examples presented in Fig. 5, the wavelength of the
mode-0 solution is ~1.75 turns, so that the profile of D has a
single maximum and/or minimum for each turn [Fig. 5(b)].
As a consequence, each successive pair of turns defines a
single node (transition from high to low D values or vice
versa) whose value and location changed continuously owing
to the quasiperiodic nature of the propagation. The mode-1
solution, with a wavelength of ~0.67 turns, has three nodes
[Fig. 5(c)]. Each mode of quasiperiodic propagation also
produces its own A-vs-D restitution curve [Fig. 5(d):
mode-0, thin curve, and mode-1, thick curve]. Each curve
has two branches, which are associated, respectively, with
the phase of the propagation in which A and D increase or
decrease. This reflects the modulating effect of the electro-
tonic coupling on the APD [20,31]. On the other hand, the
two modes have almost the same 6(D) dispersion curve [Fig.
5(e)].

The MBRDR model produces quasiperiodic solutions that
are different from the BRDR model, but that are similar to
those observed in the 1D ring [38]. The bifurcation is sub-
critical, with bistability between period-1 reentry and quasi-
periodic reentry, which appears with high amplitude D oscil-
lations [Figs. 3(b) and 6(a)]. The APD as a function of D is
shown in Fig. 6(b). The APD and the minimum D value are
shorter than for the BRDR model, and the high-slope portion
is more abrupt and is restricted to a smaller interval of D
near D,,,. Since the quasiperiodic solution appears with
high-amplitude D oscillations, it covers as soon as it is cre-
ated a range of D where the slope of both the restitution and
dispersion curves [see Fig. 6(c)] are important. We have sug-
gested that the complexity of the spatiotemporal pattern of D
was resulting from the interaction of the high-slope regions
of the restitution and dispersion curves [37].

D. Dynamics of wave-front unpinning

In the 1D BRDR ring model, the quasiperiodic solutions
disappear below a minimum radius when the activation front
blocks in its refractory tail (for the BRDR model, at R;,
=2.04 cm) [18,19,36]. If AR<AR,,;, (~0.25 cm for mode-0
and ~0.65 cm for mode-1), the sustained reentry disappears
in the BRDR annulus as in the 1D ring [18,31,38]. However,
for AR=AR,,;,, a new form of sustained reentry appears at
low R;,. The wave front unpins from the obstacle, with the
formation of a phase singularity (PS, defined as the end point
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FIG. 6. (A) The MBRDR has only one quasiperiodic mode of
reentry. It shows complex and modulated oscillation of D with an
amplitude that is slightly less at R,,=3.27 (dotted line) than at
R;,=1.27 cm (solid line). (B) A(D) (D,,;,=25 ms, D,,; falling be-
tween 42 and 52 ms for the slope of the different branches, and

dA/dD),,,,=10) obtained with the quasiperiodic mode in panel (A)
for which the maximum APD is shorter, but the slope steeper than
in the BRDR model. (C) The dispersion curve #(D) for the solution
displayed in panel (A) is identical to the dispersion curve obtained
for the BRDR model [Fig. 5(e)].

of a wave front that is not attached to a boundary) that makes
an excursion in the interior of medium and then reattaches to
the inner border. This behavior is found for both the BRDR
and MBRDR ionic models. The unpinning introduces a delay
in the period of rotation that allows the propagation to re-
main sustained at shorter values of R,,.

Examples of wave unpinning for the mode-0 and mode-1
quasiperiodic solutions of the BRDR model are shown in
Fig. 7. The wave propagates around the annulus (the thin
black curves are the isochrones of activation taken at 5-ms
intervals) to reach a locus where the excitability at the inner
border is too low to sustain the propagation. The wave front
stops near r=R;,, but the medium at some distance away
from the inner border is still excitable enough to maintain the
propagation. The activation front travels around the region of
functional block, reattaches to the inner border, and contin-
ues its propagation until the next unpinning. The block is
clearly due to a lack of excitability near the inner border and
not to the curvature of the front reaching a critical value,
since the excitation front is almost rectilinear at the site of
block and reaches quite a high curvature when it travels
around the inexcitable region.

For the mode-0O reentry, unpinning first appears at R,,
~2.04 cm, which is close to the minimum radius for mode-0
reentry in the 1D ring model [31]. Below a minimum R,
(R,;in=2.02 cm), wave unpinning and quasiperiodic reentry
can no longer produce a sustained propagation. The succes-
sive detachments rather create a sequence of retrograde and
antegrade fronts that finally lead to the annihilation of reen-
try. For mode-1, unpinning first occurs at R;,~2.48 cm
(compared to the termination of mode-1 reentry at ~2.52 cm
when AR=0), a value at which mode-0 still propagates with-
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FIG. 7. BRDR model. (A) Unpinning for the mode-0 quasiperi-
odic reentry (R;,=2.022 ¢cm and AR=1.0 cm) occurs twice (labeled
1 and 2) at positions corresponding to closely spaced minima of D
(shown in the inset for r=2.522 cm). (B) Unpinning for the mode-1
reentry (R;,=2.415 cm and AR=2 cm) first occurs once at each
turn, at the position where D is below a minimum threshold value,
but the sequence becomes increasingly complex with time.

out detachment. Sustained propagation stops through a tran-
sient fibrillatorylike activity when R;, is decreased to
~2.45 cm.

The two modes (mode-0 and mode-1 of the BRDR
model) of propagation also differ with respect to the dynam-
ics of the unpinnings.

For mode-0 [Fig. 7(a), R;,=2.022 cm and AR=1.0 cm],
the wave unpins twice at two positions spaced by only 5.2%
of one rotation. Accordingly, the spatial profile of D at r
=R;, has two closely spaced minima at the positions where
the detachments occur [inset in Fig. 7(a)]. The wave front
then reattaches to the obstacle and propagates for a distance
corresponding to the wavelength of the D oscillation (~1.67
turn) before the next sequence of unpinning. For mode-1
[Fig. 7(b)], the unpinning occurs once at every 1.34 turn [~2
times the wavelength of mode-1 as illustrated in Fig. 5(a)]
with a much more complex dynamics. Instead of repetitive
detachments with similar trajectories of the PS as in mode-0,
we have observed a very long transient (>200 turns) during
which the maximum distance traveled by the PS increased
slowly from one unpinning to the next, a process of ampli-
fication leading to an irregular but sustained pattern.

The quasiperiodic reentry of the MBRDR model differs
from both the mode-0 and mode-1 QP reentry of the BRDR
model, as already seen in Figs. 5 and 6. The two types of
unpinning, occurring, respectively, for the mode-0 and
mode-1 reentries in the BRDR model, are now observed to-
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FIG. 8. Two types of wave-front unpinning from the obstacle
coexist for the MBRDR model with R;,=1.226 cm and AR
=2.0 cm (isochrones of activation time at each 2.5 ms are shown as
thin lines). (A) The wave tip of the broken front travels along a
single long trajectory (thick black line) or (B) a series of two
smaller trajectories.

gether during the same reentry. The single unpinning de-
picted in Fig. 8 for R;,=1.226 cm is the first to appear (start-
ing at R;,=1.28 cm and AR,,;,>0.6 cm), with a dynamics
similar to that of the mode-1 solution of the BRDR model.
The front blocks at r=R;,, and the PS can reenter in the area
of block at r~R;,+0.75 cm. The second type of unpinning,
with two consecutive detachments as shown in Fig. 9, ap-
pears at R;,=1.228 cm when AR=2 cm and is similar to the
unpinning of the mode-0 quasiperiodic reentry of the BRDR
model in which the wave front detaches twice during the
same rotation. The minimum width of the annulus (AR,,;,
~(.2 cm) is again slightly less than for the single unpinning
as is the case for the BRDR model. Elucidating the details of
the bifurcation would require further study. However, the
results suggest that the acceleration of the d and f gates leads
to a merging of the mode-0 and mode-1 solutions (a single
mode exists in the MBRDR model) into a single regime that
combines some characteristics of both regimes (the two
types of unpinning are present).

IV. DISCUSSION
A. Loss of stability of periodic reentry

The bifurcation from period-1 to quasiperiodic reentry in
the annulus retains all the major features observed in the 1D
ring for both the BRDR and MBRDR models. For the BRDR
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FIG. 9. Effect of spatial discretization [Ax=27R;,,/(N-1) with
R;,=3.5 cm] on the normalized error (e=[d—min(d)]/min(d) nor-
malized units (n.u.), where min(d) is the results obtained with N
=2'%) for d e {D,A,T} of a period-1 reentry with AR=2 cm. The
number of layers along r is N,=250.

model, the bifurcation remains supercritical, with the appear-
ance and then gradual gain of the amplitude of a mode-0
solution. A second mode-1 solution is created at a lower
radius, where it appears with high amplitude. For the
MBRDR model, the bifurcation is subcritical, with a single
complex nonperiodic solution. The preservation on the annu-
lus of all these features, which were shown in the 1D ring to
be dependent on the APD restitution curve, as well as the
fact that the bifurcation always occurs at the same critical
period 7.,,; and D,,,, irrespective of the value of R, indicate
that the slope of the restitution curve is still the major deter-
minant of the stability in these models. The only difference
introduced by the width of the annulus is the decrease in
Ri, .rir» associated with the slowing of the propagation in-
duced by the curvature of the front. Although, in principle,
the interaction of curvature with the APD and the minimum
D for propagation can also have an influence, these effects
remain negligible in the BRDR and MBRDR models.

Because we are considering a continuous system, the con-
clusions about the nature of the bifurcation do not depend on
the properties of the medium. The medium is fully charac-
terized by a space constant A=y1/g,,pS and the time con-
stant 7=g,,C,,, in which g, is the resting membrane resistiv-
ity. Equation (1) can be made nondimensional by defining
the radial and temporal coordinates ry=r/\ and ty=t/7. The
characteristics of the bifurcation in any specific medium can
then be obtained by rescaling those obtained in the nondi-
mensional systems. The values of R;, ., and AR are propor-
tional to p~'2, but the values of T,,; and D, are invariant
with respect to p. They rather depend on the membrane prop-
erties of the medium.

The ability of the pseudo-2D formulation to reproduce the
location of the bifurcation of the BRDR model also helps to
understand the dynamics. The difference between the
pseudo-2D and the complete 2D model regarding stability of
the period-1 solution is that the latter includes implicitly the
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perturbations affecting the curvature, in addition to those re-
lated to the diastolic interval. Although it has been estab-
lished that curvature can destabilize a spiral wave from a
circular core to a meandering trajectory [40], the equivalence
of the two models shows that instability that could be asso-
ciated with fluctuations of the curvature per se does not con-
tribute to the destabilization of the period-1 reentry in the
BRDR annulus.

However, we do not have any means to circumscribe pre-
cisely the class of membrane ionic model for which this con-
clusion would remain true. Evidently, for any model, we can
repeat the procedure of obtaining the general restitution and
dispersion relations (i.e., function of D and K) and then per-
form the comparison between the complete reaction-
diffusion model and the simplified model. Even if this pro-
cedure can provide useful information, it does not allow any
general prediction. What is needed is a simplified formula-
tion, in the spirit of the integral-delay model for the 1D ring
[19,20,31], that will allow a formal analysis of the factors
acting on the bifurcation. Nevertheless, our results indicate
that an integral-delay model describing the propagation at r
=R, based on generalized restitution and dispersion relations
and complemented by functional description of K;,(R;,,AR)
would be sufficient to describe the characteristics and the
stability of the period-1 solution bifurcation for at least a
subclass of cardiac ionic models.

However, a simplified approach to describe quasiperiodic
propagation with high-amplitude D oscillations, but still no
unpinning, would need to incorporate the spatiotemporal
variation of K;, during propagation. The notion of critical
curvature may also need to be updated. This concept was
first introduced to define the maximum curvature corre-
sponding to the critical ratio of source/sink for suprathresh-
old activation [27]. But it should also include the fact that the
minimal excitability for propagation depends on both the
morphology of the wave and the spatial distribution of pre-
maturity [29]. The question about the importance that this
effect has on reentry dynamics remains open.

The annulus geometry has been used previously to study
the dynamics of the Luo-Rudy I (LR-I) ionic model [25]. Qu
et al. argued that an increase in the width of the annulus
shifted the transition from period-1 to quasiperiodic reentry
to a higher inner radius. They explained the loss of stability
by the formation of “transverse modes™ [41] or discordant
alternans far from R;,. These conclusions are the opposite of
our results, which show that a larger AR allows stable
period-1 reentry at lower R;, and that stability can be pre-
dicted from a simplified model describing the dynamics at
r=R;,. Although quasiperiodic solutions may be viewed as
discordant alternans in the angular direction [see Figs. 5(a)
and 5(b) and Fig. 6(a)], we have always observed the oscil-
lations of D to occur together and in phase from r=R;, to r
=R, although the amplitude of the oscillations was slightly
reduced at r=R,,,,.

To understand this discrepancy, we first investigated the
conditions to obtain discordant alternans in the BRDR ionic
model. Concordant and discordant alternans can be gener-
ated in a paced cable when the maximum slope of the resti-
tution curve is greater than 1 [42]. Generally, discordant al-
ternans appear only if the length of the cable is beyond a
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minimum value [43], and an even greater dimension is re-
quired in a 2D medium [15]. A BRDR cable [with the same
p and S as in Eq. (1)] was paced at one end at a period of
stimulation just below the value of T,,,;, for transition to qua-
siperiodic propagation in the annulus. We found discordant
alternans when the length of cable was greater than 5 cm.
This value is far beyond the values of AR and R, studied in
this article (see Fig. 4), which makes it unlikely that discor-
dant alternans may form along the radial direction for the
small and intermediate AR studied herein.

We then repeated our procedure (change R;, with AR
fixed) to identify the locus of the bifurcation with the version
of the Luo-Rudy I model used by Xie er al. [25]. As for the
BRDR model, we found the bifurcation to occur at lower R;,
for larger values of AR (~2.3 cm for AR=1.0 compared to
~2.4 c¢cm for AR=0.05 cm). Furthermore, we also found the
bifurcation of the Luo-Rudy I model to be supercritical,
which eliminates the possibility that the conflict between our
results and those Xie et al. was spawned by a difference in
the methods used to localize the bifurcation in a case where
there would be bistability between period-1 and quasiperi-
odic solutions. The only remaining avenue that we still en-
vision to reconcile the two set of results is that a new type of
bifurcation, involving discordant alternans along the radial
direction, may take place when the medium becomes ex-
tended enough, this being consistent with the fact that most
of the results shown by Xie et al. were obtained on an annu-
lus with a AR value of 9.2 cm. Further investigation is
needed to unravel this hypothesis.

B. Dynamics of wave-front unpinning

In the 1D ring model, quasiperiodic reentry stops when
the activation front reaches a portion of the medium that is
still refractory. In the 2D annulus, annihilation is preceded by
new regimes of propagation specific to each mode of quasi-
periodic propagation. Detachment of the wave front from the
obstacle arises because the refractoriness is greater at the
inner border than elsewhere in the medium. The wave can
propagate beyond this zone of block because the tissue re-
mains excitable at some distance from the obstacle, thus cre-
ating a transient functional reentry. This type of propagation
is similar to the meandering of a spiral wave in a continuous
medium without an obstacle [9,10,15]. Both the initiation
and evolution of wave-front unpinning are governed by the
localized dynamics near the inner radius. This localization
near R;, is somewhat similar to the meandering mechanism
near the circular core of a spiral wave described by Otani
[44] or to the concept of the sensitive zone of a spiral wave
[45]. Herein, the dynamics of the wave-front unpinning de-
pends on spatiotemporal variations of excitability specific to
each quasiperiodic mode of propagation.

When the system is set in a regime of sustained unpin-
ning, diminishing R;, leads to an annihilation of reentry
through a complex dynamics that can be designated as a
transient fibrillation. For the BRDR model, both the duration
and dynamical features of this transient fibrillation depend
on the quasiperiodic mode from which it has been induced. It
is known that the BRDR and MBRDR models cannot pro-
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duce stable reentry in a 2D sheet [37]. Sustained vortices can
be obtained only if the acceleration factor of the d and f
gates is greater than the value of 2 that we have used in this
paper. For higher values of the acceleration factor, it might
be possible to get a transition from quasiperiodic reentry to
sustained fibrillation by diminishing R;,.

However, our results with an acceleration factor of 2 sug-
gest that a unique quasiperiodic solution will then exist be-
low R;, .., A more interesting situation would be a model
with multiple modes of quasiperiodic reentry also allowing
sustained fibrillation. Since the different modes would be
likely to disappear at different R;,, this will raise the possi-
bility of bistability between quasiperiodic reentry and fibril-
lation in the annulus. It will also allow examination of
whether the multiple modes of quasiperiodic reentry can be
used to induce fibrillations with different dynamical signa-
tures (e.g., frequency content), raising the possibility that
fibrillation characteristics could also be set by the “initial
conditions” of the substrate, in addition to differences in tis-
sue electrophysiology [46].

V. CONCLUSIONS

This work illustrates that the BRDR and MBRDR formu-
lations belong to the class of models for which the stability
of the period-1 solution is controlled in the first place by the
restitution curve of the APD, which reaches high slope at
values of D where the D-dependent part of the propagation
speed is still maximum and constant. The high D also com-
pels the bifurcation to occur at a large value of R;,, where the
curvature is still low. The most interesting situation will ob-
viously be a model in which the bifurcation will occur with
high curvature as well as high slope of the restitution and
dispersion relations. However, it is still to be seen whether
such a regime can be reached with a realistic cardiac model.
Our results also stress how misleading a study of bifurcation
can become without some a priori knowledge of the possible
dynamical regimes that may exist in the system. In our case,
the mode-1 solution of the BRDR model would have been
missed, if we had not been guided by our prior investigation
of the 1D ring. Beside, a larger rate of AR reduction could
have also lead to detecting a direct transition from period-1
to mode-1 quasiperiodic reentry. It would also have been
difficult to identify what aspects of the dynamics were truly
a consequence of the 2D extension of the annulus had not the
space-clamped, 1D ring and the pseudo-2D settings been
previously investigated. The next challenging step is to pro-
duce a simplified 2D formulation that would allow some
general analytical discussion of all the regimes of propaga-
tion on the 2D annulus.
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Québécois de Calcul de Haute Performance.”
APPENDIX: NUMERICAL METHOD

Simulation of Eq. (1) is done by first expressing the par-
tial derivative in time as a forward finite difference:

av Vt _ VT—AI
— =, Al
dt At (Al
where V and V=27 are, respectively, the potential at time ¢
and r—A¢. Introducing Eq. (A1) into Eq. (1) and separating
the terms at times ¢ and r—Ar yields the equation for V at
time #:

82_‘/+lﬂ/+l(92_v AV_ (AZ)
amr  ror P c?d)z -6
with
SC
APy
Ar

won

The method to calculate I52"2=[1, (V=27 (y)"=2)
+1;, (V72 (y)))]/2 is described in Ref. [18].

The system is then discretized with respect to the ¢ coor-
dinate with a uniform mesh of N points separated by A¢
=2/ N. The partial derivative with respect to ¢ is expressed

by a centered finite difference:
&ZVj(r) _ Vj_l(r) - 2Vj(r) + Vj+1(l’)
J ¢2 A ¢2 ’
in which j is the index of the node. Since V(0)=V(2m), V;
can be expressed as the inverse Fourier transform,

N-1
1 . )
Vj(r) — N E Vm(r)e—l(Z']Tm/N)j,

m=0

in which the V,,(r) are the basis functions associated with
each spatial frequency. The second derivative ¢*V/d¢? is fi-
nally approximated as

PViAG) 2 G ] (2
;qu =NA¢2mE:OVm(r)e @mmiN)I| cos ;m -1].

The two remaining partial derivatives of Eq. (A2) are

] N-1
WV(rjAg) 1 dV,(r) iQmmIN)j
or N =0 ar ’

m:

. N-1
FV(rjAg) 1 D GG p———
or’ N.=, or ’

Putting these together, all these expressions in Eq. (A2) end
up in a set of N second-order ordinary differential equations
for the basis function (V,,, me[0,N—1]) in the Fourier
space
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(A3)

where g,, is the projection of g in the discrete Fourier space.
Since V is real, the projection on the Fourier basis is sym-
metric, which means that there are N equations to solve,
corresponding to N/2 real parts and (N/2)—1 imaginary
parts.

Equation (A3) is solved using a finite-element method
with a linear basis functions (hat functions) [47]. It yields a
system of linear equations of the form AV=g, where A is a
tridiagonal matrix. The system of equation is solved with a
LU decomposition algorithm optimized for tridiagonal matri-
ces [48]. In summary, the method consists in applying, for
each time step At, the following steps:
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(i) Calculate g at each node.

(ii) g,,(r)=FET(g(r)) for each layer r.

(iii) For each m €{0,1,...,N—1}, solve V,,(r).

(iv) V=FFT-(Vv,,).

Figure 9 shows the error in the set {D,A, T} for a periodic
reentry as a function of Ax=2mR;,/(N-1) while changing N.
For each value of N, we have also found that a twofold
increase of N, was producing a negligible decrease of & (less
than 0.01%, not shown). In this paper, we use Ar=5 us, a
radial distance of 80 wm between the layers, and a number
of modes in the Fourier basis (N) such that the internode
distance of the grid at R;, is equal to ~67 wum. These values
assure a maximum error of less than 2%. The fast Fourier
transform (FFT) algorithm used in this paper is the fftw v2.0
(http://www.fftw.org/) included in a C program running on 8
RISC 12000 processors using the OpenMP library.
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